Two-dimensional Heisenberg model with nonlinear interactions

Sergio Caracciolo*
Dipartimento di Fisica dell'Università di Milano, I-20100 Milano, Italy and INFN, Sezione di Pisa, and INFM-NEST, Pisa, Italy
Andrea Pelissetto ${ }^{\dagger}$
Dipartimento di Fisica and INFN, Sezione di Roma I, Università degli Studi di Roma "La Sapienza," I-00185 Roma, Italy

(Received 27 February 2002; published 24 July 2002)

Abstract

We investigate a two-dimensional classical N-vector model with a nonlinear interaction $\left(1+\boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}\right)^{p}$ in the large- N limit. As observed for $N=3$ by Blöte et al. [Phys. Rev. Lett. 88, 047203 (2002)], we find a first-order transition for $p>p_{c}$ and no finite-temperature phase transitions for $p<p_{c}$. For $p>p_{c}$, both phases have short-range order, the correlation length showing a finite discontinuity at the transition. For $p=p_{c}$, there is a peculiar transition, where the spin-spin correlation length is finite while the energy-energy correlation length diverges.

DOI: 10.1103/PhysRevE. 66.016120
PACS number(s): 05.50.+q, 75.10.Hk, 64.60.Cn, 64.60.Fr

The two-dimensional Heisenberg model has been the object of extensive studies that mainly focused on the $O(N)$-symmetric Hamiltonian

$$
\begin{equation*}
H=-N \beta \sum_{\langle i j\rangle} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}, \tag{1}
\end{equation*}
$$

where $\boldsymbol{\sigma}_{i}$ is an N-dimensional unit spin and the sum is extended over all lattice nearest neighbors. The behavior of this system in two dimensions is well understood. It is disordered for all finite β [1] and it is described for $\beta \rightarrow \infty$ by the perturbative renormalization group [2-4]. The square-lattice model has been extensively studied numerically [5-10], checking the perturbative predictions $[11-15]$ and the nonperturbative constants [16-18].

In this paper we study a more general Hamiltonian on the square lattice; more precisely, we consider

$$
\begin{equation*}
H=-N \beta \sum_{x \mu} W\left(1+\boldsymbol{\sigma}_{x} \cdot \boldsymbol{\sigma}_{x+\mu}\right) \tag{2}
\end{equation*}
$$

where $W(x)$ is a generic function such that $W(2)>W(x)$ for all $0 \leqslant x<2$, in order to guarantee that the system orders ferromagnetically for $\beta \rightarrow \infty$. A particular case of the Hamiltonian (2) has been extensively studied in the years, the case in which $W(x)$ is a second-order polynomial. Such a choice of $W(x)$ gives rise to the so-called mixed $O(N)-\mathbb{R} P^{N-1}$ model [19-28], which is relevant for liquid crystals [29-34] and for some orientational transitions [35].

In a recent paper [36], the authors analyzed a model with $W(x)=a x^{p}+b$ and found an additional first-order transition for large enough p. Here, we will study the same model, finding an analogous result for $p>p_{c} \approx 4.537857$ a firstorder transition appears, the correlation length-and in general, all thermodynamic quantities-showing a finite discontinuity. Note that the appearance of a first-order transition in

[^0]nonlinear models is not a new phenomenon. Indeed, for N $=\infty$ it was already shown in Ref. [20] that a first-order transition appears in mixed $O(N)-\mathrm{R} P^{N-1}$ models for certain values of the couplings. It is of interest to understand the behavior for $p=p_{c}$. For such value of p, Ref. [36] found a peculiar phase transition; while the spin-spin correlation length remains finite, the energy-energy correlation length diverges. Here, we will show that the same phenomenon occurs for $N=\infty$. However, at variance with what observed in Ref. [36], the critical theory shows mean-field, not Ising, behavior.

Let us consider the Hamiltonian (2) on a hypercubic d-dimensional lattice. We normalize $W(x)$ by requiring $W^{\prime}(2)=1$ so that in the spin-wave limit,

$$
\begin{equation*}
H=\frac{N \beta}{2} \int d x \partial_{\mu} \boldsymbol{\sigma} \cdot \partial_{\mu} \boldsymbol{\sigma} . \tag{3}
\end{equation*}
$$

We also fix $W(1)=0$ so that $H=0$ for a random configuration. Then, we introduce two new fields $\lambda_{x \mu}$ and $\rho_{x \mu}$ in order to linearize the dependence of the Hamiltonian on the spin coupling. We write

$$
\begin{align*}
& \exp \left[N \beta W\left(1+\boldsymbol{\sigma}_{x} \cdot \boldsymbol{\sigma}_{x+\mu}\right)\right] \\
& \sim \int d \rho_{x \mu} d \lambda_{x \mu} \exp \left[\frac{N \beta}{2} \lambda_{x \mu}\left(1+\boldsymbol{\sigma}_{x} \cdot \boldsymbol{\sigma}_{x+\mu}-\rho_{x \mu}\right)\right. \\
& \left.\quad+N \beta W\left(\rho_{x \mu}\right)\right] \tag{4}
\end{align*}
$$

As usual in the large- N expansion, we also introduce a field μ_{x} in order to eliminate the constraint $\boldsymbol{\sigma}_{x}^{2}=1$. Thus, we write

$$
\begin{equation*}
\delta\left(\boldsymbol{\sigma}_{x}^{2}-1\right) \sim \int d \mu_{x} \exp \left[-\frac{N \beta}{2} \mu_{x}\left(\boldsymbol{\sigma}_{x}^{2}-1\right)\right] . \tag{5}
\end{equation*}
$$

With these transformations we can rewrite the partition function as

$$
\begin{equation*}
Z=\int \prod_{x \mu}\left[d \rho_{x \mu} d \lambda_{x \mu}\right] \prod_{x}\left[d \mu_{x} d \boldsymbol{\sigma}_{x}\right] e^{N A} \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
A= & \frac{\beta}{2} \sum_{x \mu}\left[\lambda_{x \mu}+\lambda_{x \mu} \boldsymbol{\sigma}_{x} \cdot \boldsymbol{\sigma}_{x+\mu}-\lambda_{x \mu} \rho_{x \mu}+2 W\left(\rho_{x \mu}\right)\right] \\
& -\frac{\beta}{2} \sum_{x}\left(\mu_{x} \boldsymbol{\sigma}_{x}^{2}-\mu_{x}\right) . \tag{7}
\end{align*}
$$

We perform a saddle-point integration by writing

$$
\begin{align*}
\lambda_{x \mu} & =\alpha+\hat{\lambda}_{x \mu}, \\
\rho_{x \mu} & =\tau+\hat{\rho}_{x \mu}, \\
\mu_{x} & =\gamma+\hat{\mu}_{x} . \tag{8}
\end{align*}
$$

A standard calculation gives the following saddle-point equations [37]:

$$
\begin{gather*}
d \beta(1-\tau)+\frac{1}{\alpha}\left[\left(2 d+m_{0}^{2}\right) I\left(m_{0}^{2}\right)-1\right]=0, \\
\alpha-2 W^{\prime}(\tau)=0, \\
\frac{\beta}{2}-\frac{1}{\alpha} I\left(m_{0}^{2}\right)=0, \tag{9}
\end{gather*}
$$

where we set $\gamma=\alpha\left(2 d+m_{0}^{2}\right) / 2$,

$$
\begin{equation*}
I\left(m_{0}^{2}\right)=\int \frac{d^{d} p}{(2 \pi)^{d}} \frac{1}{\hat{p}^{2}+m_{0}^{2}}, \tag{10}
\end{equation*}
$$

and $\hat{p}^{2}=4 \Sigma_{\mu} \sin ^{2} p_{\mu} / 2$. The variable m_{0} has a simple interpretation; it is related to the spin-spin correlation length by $\xi_{\sigma}=1 / m_{0}$. From Eq. (9) we obtain finally

$$
\begin{equation*}
\beta=\frac{I\left(m_{0}^{2}\right)}{W^{\prime}(\tau)} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau=\tau\left(m_{0}\right) \equiv 2+\frac{m_{0}^{2}}{2 d}-\frac{1}{2 d I\left(m_{0}^{2}\right)} \tag{12}
\end{equation*}
$$

The corresponding free energy can be written as

$$
\begin{equation*}
F=-\beta d W(\tau)+\frac{1}{2} \ln I\left(m_{0}^{2}\right)+\frac{1}{2} L\left(m_{0}^{2}\right), \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
L\left(m_{0}^{2}\right)=\int \frac{d^{d} p}{(2 \pi)^{d}} \ln \left(\hat{p}^{2}+m_{0}^{2}\right) . \tag{14}
\end{equation*}
$$

Focusing now on the two-dimensional case, let us show that, for any $W(x)$, the spin-spin correlation length is always fi-

FIG. 1. Function $\beta\left(m_{0}\right) \equiv I\left(m_{0}\right) / W^{\prime}(\tau)$ vs m_{0}, for $p=4,4.5,5$, and 5.5. For any $p, \beta\left(m_{0}\right) \rightarrow \infty$ for $m_{0} \rightarrow 0$.
nite, i.e., $\xi_{\sigma}=\infty$, so that $m_{0}=0$, only for $\beta=\infty$. Note first that $\tau=2$ (respectively $\tau=1$) for $m_{0}=0$ (respectively m_{0} $=\infty)$ and that $\tau\left(m_{0}\right)$ is a strictly decreasing function of m_{0}. Thus, $W^{\prime}(\tau)$ is finite for all m_{0}. Then, since $I(0)=+\infty$, we find that $\xi_{\sigma}=\infty$ only if $\beta=\infty$, i.e., ξ_{σ} is finite for all finite β.

We want now to discuss the behavior for $\beta \rightarrow \infty$. From Eq. (11), we see that $\beta \rightarrow \infty$ for $m_{0} \rightarrow 0$ and possibly for m_{0} $\rightarrow \bar{m}_{i}$, where $W^{\prime}\left[\tau\left(\bar{m}_{i}\right)\right]=0$. If there is more than one solution, the relevant one corresponds to the lowest free energy. Now, for $\beta \rightarrow \infty$, we can simply write [38] $F \approx-2 \beta W(\tau)$. Since $\tau(0)=2$ and $W(2)>W(\tau)$ for all $0 \leqslant \tau<2$ because of the ferromagnetic condition, the relevant solution is the one with $m_{0} \rightarrow 0$. Then, using

$$
\begin{equation*}
I\left(m_{0}^{2}\right)=-\frac{1}{2 \pi} \ln \frac{m_{0}^{2}}{32}+O\left(m_{0}^{2} \ln m_{0}^{2}\right) \tag{15}
\end{equation*}
$$

for $m_{0} \rightarrow 0$, we obtain

$$
\begin{equation*}
m_{0}^{2}=32 e^{-2 \pi \beta+\pi W^{\prime \prime}(2) / 2}\left[1+O\left(\beta^{-1}\right)\right], \tag{16}
\end{equation*}
$$

in agreement with the standard perturbative renormalizationgroup predictions [39].

Let us now discuss the possibility of first-order phase transitions, which may arise from the presence of multiple solutions to Eq. (11). As in Ref. [36], we consider

$$
\begin{equation*}
W(x)=\frac{2}{p}\left(\frac{x}{2}\right)^{p}-\frac{2^{1-p}}{p} . \tag{17}
\end{equation*}
$$

In Fig. 1 we plot the function $\beta\left(m_{0}\right) \equiv I\left(m_{0}^{2}\right) / W^{\prime}(\tau)$, for p $=4,4.5,5,5.5$. For $p=4,4.5$, for each β there is a unique solution m_{0} and thus there are no phase transitions. On the other hand, for $p=5,5.5$, there is the possibility of multiple solutions, in which case the most relevant is the one that gives the lowest free energy. For $p=5$, we plot the free energy in Fig. 2. We observe a first-order transition for β ≈ 1.543 with a finite discontinuity of the correlation length, $\Delta \xi_{\sigma} \approx 16.2$, and of all thermodynamic quantities. A numerical analysis of the gap equation (11) shows that a first-order transition exists for all $p>p_{c} \approx 4.537857$. For $p=p_{c}$, the thermodynamic functions are nonanalytic for $\beta=\beta_{c}$ ≈ 1.334 72. In this case,

FIG. 2. The free energy $F(\beta)$ for $p=5$. There is a critical point C for $\beta_{c} \approx 1.543$.

$$
\begin{equation*}
\beta-\beta_{c} \approx-0.035726\left(m_{0}-m_{0 c}\right)^{3}+O\left[\left(m_{0}-m_{0 c}\right)^{4}\right], \tag{18}
\end{equation*}
$$

where $m_{0 c} \approx 0.387537$. Consequently, repeating the discussion of Ref. [20],

$$
\begin{gather*}
\xi_{\sigma}(\beta) \approx 2.5804+7.8682\left(\beta-\beta_{c}\right)^{1 / 3}+\cdots \tag{19}\\
E(\beta) \approx 0.162274+0.314385\left(\beta-\beta_{c}\right)^{1 / 3}+\cdots \tag{20}\\
C(\beta) \approx 0.104795\left(\beta-\beta_{c}\right)^{-2 / 3}+\cdots \tag{21}
\end{gather*}
$$

where E and C are, respectively, the energy and the specific heat per site. Note that $C(\beta)$ diverges at the critical point, indicating that, although spin-spin correlations are not critical, criticality is observed for energy-energy correlations. Indeed, consider

$$
\begin{equation*}
D_{Q}(k)=\sum_{x \mu \nu} e^{i k \cdot(x-y)}\left\langle Q\left(1+\boldsymbol{\sigma}_{x} \cdot \boldsymbol{\sigma}_{x+\mu}\right) ; Q\left(1+\boldsymbol{\sigma}_{y} \cdot \boldsymbol{\sigma}_{y+\nu}\right)\right\rangle \tag{22}
\end{equation*}
$$

where $Q(x)$ is an arbitrary regular function. For $N \rightarrow \infty$,

$$
\begin{equation*}
D_{Q}(k)=\left[Q^{\prime}(\tau)\right]^{2} \sum_{\mu \nu}\left\langle\hat{\rho}_{\mu}(-k) ; \hat{\rho}_{\nu}(k)\right\rangle, \tag{23}
\end{equation*}
$$

so that

$$
\begin{equation*}
N D_{Q}(0)=\left(\frac{Q^{\prime}(\tau)}{W^{\prime}(\tau)}\right)^{2} C(\beta) \tag{24}
\end{equation*}
$$

It follows $D_{Q}(0) \sim\left(\beta-\beta_{c}\right)^{-2 / 3}$ for any function $Q(x)$. Thus, all correlation functions of the energy show a critical behavior. In order to compute the associated correlation length, we determine $D_{Q}(k)$ for arbitrary k. We obtain
$N D_{Q}(k)$

$$
\begin{equation*}
=\frac{2\left[Q^{\prime}(\tau)\right]^{2}\left[A_{2}(k) A_{0}(k)-A_{1}(k)^{2}\right]}{\beta^{2}\left[W^{\prime}(\tau)\right]^{2} A_{0}(k)-\beta W^{\prime \prime}(\tau)\left[A_{2}(k) A_{0}(k)-A_{1}(k)^{2}\right]} \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}(k)=\int \frac{d^{2} q}{(2 \pi)^{2}} \frac{\left(\sum_{\mu} \cos q_{\mu}\right)^{n}}{\left[(q+k / 2)^{2}+m_{0}^{2}\right]\left[(q-k / 2)^{2}+m_{0}^{2}\right]} \tag{26}
\end{equation*}
$$

For $\beta \rightarrow \beta_{c}$ and $k \rightarrow 0$, we have

$$
\begin{equation*}
D_{Q}(k)^{-1}=a\left(\beta-\beta_{c}\right)^{2 / 3}+b k^{2}+O\left(k^{4}\right) \tag{27}
\end{equation*}
$$

with $a, b \neq 0$. Thus, the energy-energy correlation length $\xi_{E}(\beta)$ behaves as

$$
\begin{equation*}
\xi_{E}(\beta) \sim\left(\beta-\beta_{c}\right)^{-1 / 3} \tag{28}
\end{equation*}
$$

i.e., $\nu_{E}=1 / 3$. We thus confirm the results of Ref. [36] on the existence of the critical theory for $p=p_{c}$, although we disagree on the nature of the critical behavior. Indeed, Ref. [36] suggested $\alpha=1-1 / \delta$, with δ assuming the Ising value δ $=15$. Instead, we find the mean-field value $\delta=3$. It is unclear how to reconcile our large- N result with the argument of Ref. [36]. Indeed, they argue that the transition should be Ising-like because the order parameter is a scalar and confirm numerically this conjecture for $N=3$. Note that the argument applies for all values of N and thus, if the large- N limit is smooth, it would predict Ising behavior even for $N=\infty$. On the other hand, for $N=\infty$ one expects mean-field exponents since fluctuations are neglected. Inclusion of the $1 / N$ corrections is expected to change the value of α, but it would make it N dependent, and thus definitely not related to the Ising exponents. Therefore, either the limit $N \rightarrow \infty$ is singular, or the exponent α for this transition is different from that predicted in Ref. [36]. This issue deserves further investigations.

We thank Henk Blöte and Henk Hilhorst for many useful comments.
[1] N.D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
[2] A.M. Polyakov, Phys. Lett. 59B, 79 (1975).
[3] E. Brézin and J. Zinn-Justin, Phys. Rev. B 14, 3110 (1976).
[4] W.A. Bardeen, B.W. Lee, and R.E. Shrock, Phys. Rev. D 14, 985 (1976).
[5] U. Wolff, Phys. Rev. Lett. 62, 361 (1989); Nucl. Phys. B 334, 581 (1990); Phys. Lett. B 248, 335 (1990).
[6] R.G. Edwards, S.J. Ferreira, J. Goodman, and A.D. Sokal, Nucl. Phys. B 380, 621 (1992).
[7] J.-K. Kim, Phys. Rev. Lett. 70, 1735 (1993); Phys. Rev. D 50, 4663 (1994).
[8] S. Caracciolo, R.G. Edwards, A. Pelissetto, and A.D. Sokal, Phys. Rev. Lett. 75, 1891 (1995); Nucl. Phys. B (Proc. Suppl.) 42, 752 (1995).
[9] S. Caracciolo, R.G. Edwards, T. Mendes, A. Pelissetto, and A.D. Sokal, Nucl. Phys. B (Proc. Suppl.) 47, 763 (1996).
[10] T. Mendes, A. Pelissetto, and A.D. Sokal, Nucl. Phys. B 477, 203 (1996).
[11] M. Falcioni and A. Treves, Nucl. Phys. B 265, 671 (1986).
[12] S. Caracciolo and A. Pelissetto, Nucl. Phys. B 420, 141 (1994).
[13] S. Caracciolo and A. Pelissetto, Nucl. Phys. B 455, 619 (1995). The results presented here contained a small numerical error. The correct results are given in Ref. [14].
[14] B. Allés, S. Caracciolo, A. Pelissetto, and M. Pepe, Nucl. Phys. B 562, 581 (1999).
[15] B. Allés, A. Buonanno, and G. Cella, Nucl. Phys. B 500, 513 (1997); Nucl. Phys. B (Proc. Suppl.) 53, 677 (1997).
[16] P. Hasenfratz, M. Maggiore, and F. Niedermayer, Phys. Lett. B 245, 522 (1990).
[17] P. Hasenfratz and F. Niedermayer, Phys. Lett. B 245, 529 (1990).
[18] M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Phys. Lett. B 402, 141 (1997).
[19] S. Hikami and T. Maskawa, Prog. Theor. Phys. 67, 1038 (1982).
[20] N. Magnoli and F. Ravanini, Z. Phys. C 34, 43 (1987).
[21] K. Ohno, H.-O. Carmesin, H. Kawamura, and Y. Okabe, Phys. Rev. B 42, 10360 (1990).
[22] H. Kunz and G. Zumbach, J. Phys. A 22, L1043 (1989); Phys. Lett. B 257, 299 (1991); Phys. Rev. B 46, 662 (1992); J. Phys. A 25, 6155 (1992).
[23] P. Butera and M. Comi, Phys. Rev. B 46, 11141 (1992).
[24] S. Caracciolo, R.G. Edwards, A. Pelissetto, and A.D. Sokal,

Nucl. Phys. B (Proc. Suppl.) 26, 595 (1992); 30, 815 (1993); Phys. Rev. Lett. 71, 3906 (1993).
[25] M. Hasenbusch, Phys. Rev. D 53, 3445 (1996).
[26] F. Niedermayer, P. Weisz, and D.-S. Shin, Phys. Rev. D 53, 5918 (1996).
[27] S.M. Catterall, M. Hasenbusch, R.R. Horgan, and R. Renken, Phys. Rev. D 58, 074510 (1998).
[28] A.D. Sokal and A.O. Starinets, Nucl. Phys. B 601, 425 (2001).
[29] G. Lasher, Phys. Rev. A 5, 1350 (1972).
[30] P.A. Lebwohl and G. Lasher, Phys. Rev. A 6, 426 (1972).
[31] G. Kohring and R.E. Shrock, Nucl. Phys. B 285, 504 (1987).
[32] Lin Lei, Mol. Cryst. Liq. Cryst. 146, 41 (1987).
[33] K.M. Leung and Lin Lei, Mol. Cryst. Liq. Cryst. 146, 71 (1987).
[34] F. Biscarini, C. Zannoni, C. Chiccoli, and P. Pasini, Mol. Phys. 73, 439 (1991).
[35] T.J. Krieger and H.M. James, J. Chem. Phys. 22, 796 (1954).
[36] H.W.J. Blöte, W. Guo, and H.J. Hilhorst, Phys. Rev. Lett. 88, 047203 (2002).
[37] If $W^{\prime}(1)=0$, there is an additional solution with $\tau=1, \alpha$ $=0, \gamma=\beta^{-1}$.
[38] This is obvious for $m_{0} \rightarrow \bar{m}_{i}$, since $I\left(\bar{m}_{i}\right)$ and $L\left(\bar{m}_{i}\right)$ are finite. For $m_{0} \rightarrow 0$, it is enough to observe that $L(0)$ is finite, while $\ln I\left(m_{0}^{2}\right) \approx \ln \beta$ because of the gap equations.
[39] The large- β behavior of ξ_{σ} for any $N \geqslant 3$ and any potential $W(x)$ is given in Ref. [12].

[^0]: *Email address: Sergio.Caracciolo@sns.it
 ${ }^{\dagger}$ Email address: Andrea.Pelissetto@roma1.infn.it

